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Abstract

Rubin Observatory will compute timeseries variability features on lightcurves to aid
users in identifying objects of interest, both during realtime Alert Production as well
as in the annual Data Releases. The Data Products Definition Document (DPDD;
LSE-163) allocates space for pre-computed timeseries features, and a sample set is
baselined in LDM-151. However, in the subsequent decade the scientfic commu-
nity has made a great deal of further progress in this area. This technote reviews
the relevant literature, grouping related features where possible; discusses poten-
tial concerns and open questions; and proposes a new baseline feature set.
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Review of Timeseries Features

1 Current Baseline

Table 2 of the DPDD allocates space in both of the DIAObject and Object tables for a total of 6
bands × (32 periodic + 20 nonperiodic) features = 312 floats. The baseline described in LDM-
151 §6.21 is that these features are taken directly from Tables 4 & 5 of Richards et al. (2011).
We reproduce the text of this section from DPDD v4.2 below:

All of these metrics are calculated for both Objects (DPDD table 4, lcPeriodic and
lcNonPeriodic) and DIAObjects (DPDD table 2, lcPeriodic and lcNonPeriodic). They
are calculated and recorded separately in each band. Calculations for Objects are
performed based on forced point sourcemodel fits (DPDD table 5, psFlux). Calcula-
tions for DIAObjects are performed based on point source model fits to DIASources

(DPDD table 1, psFlux). In each case, calculation requires the fluxes and errors for
all of the sources in the lightcurve to be available in memory simultaneously.

1.1 Characterization of Periodic Variability

• Characterize lightcurve as the sum of a linear term plus sinusoids at three
fundamental frequencies plus four harmonics:

𝑦(𝑡) = 𝑐𝑡 +
3

∑
𝑖=1

4

∑
𝑗=1

𝑦𝑖(𝑡|𝑗𝑓𝑖) (1)

𝑦𝑖(𝑡|𝑗𝑓𝑖) = 𝑎𝑖,𝑗 sin(2𝜋𝑗𝑓𝑖𝑡) + 𝑏𝑖,𝑗 cos(2𝜋𝑗𝑓𝑖𝑡) + 𝑏𝑖,𝑗,0 (2)

where 𝑖 sums over fundamentals and 𝑗 over harmonics.

• Use iterative application of the generalized Lomb-Scargle periodogram, as de-
scribed in Richards et al. (2011), to establish the fundamental frequencies, 𝑓1,
𝑓2, 𝑓3:

– Search a configurable (minimum, maximum, step) linear frequency grid
with the periodogram, applying a log𝑓/𝑓𝑁 penalty for frequencies above
𝑓𝑁 = 0.5⟨1/Δ𝑇 ⟩, identifying the frequency 𝑓1 with highest power;

– Fit and subtract that frequency and its harmonics from the lightcurve;

– Repeat the periodogram search to identify 𝑓2 and 𝑓3.

1

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
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• We report a total of 32 floats:

– The linear coefficient, 𝑐 (1 float)

– The values of 𝑓1, 𝑓2, 𝑓3. (3 floats)

– The amplitude, A𝑖,𝑗 = √𝑎2
𝑖,𝑗 + 𝑏2

𝑖,𝑗 , for each 𝑖, 𝑗 pair. (12 floats)

– The phase, PH𝑖,𝑗 = arctan(𝑏𝑖,𝑗 , 𝑎𝑖,𝑗) − 𝑗𝑓𝑖
𝑓1

arctan(𝑏1,1, 𝑎1,1), for each 𝑖, 𝑗 pair,
setting PH1,1 = 0. (12 floats)

– The significance of 𝑓1 vs. the null hypothesis of white noise with no peri-
odic signal. (1 float)

– The ratio of the significance of each of 𝑓2 and 𝑓3 to the significance of 𝑓1.
(2 floats)

– The ratio of the variance of the lightcurve before subtraction of the 𝑓1
component to its variance after subtraction. (1 float)

NB the DPDD baselines providing 32 floats, but, since PH1,1 is 0 by construc-
tion, in practice only 31 need to be stored.

1.2 Characterization of Aperiodic Variability

In addition to the periodic variability described above, we follow Richards et al.
(2011) in providing a series of statistics computed from the lightcurve which do
not assume peridoicity. They define 20 floating point quantities in four groups
which we describe here, again with the caveat that future revisions to the DPDD
may require changes to this list.

Basic quantities:

• The maximum value of delta-magnitude over delta-time between successive
points in the lightcurve.

• The difference between the maximum and minimum magnitudes.

• The median absolute deviation.

• The fraction of measurements falling within 1/10 amplitudes of the median.

• The “slope trend”: the fraction of increasing minus the fraction of decreasing
delta-magnitude values between successive pairs of the last 30 points in the
lightcurve.

Moment calculations:

• Skewness.

2
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• Small sample kurtosis, i.e.

Kurtosis = 𝑛(𝑛 + 1)
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

𝑛

∑
𝑖=1 (

𝑥𝑖 − 𝑥
𝑠 )

4
− 3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3) (3)

𝑠 =
√√√
⎷

1
𝑛 − 1

𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)2 (4)

• Standard deviation.

• The fraction of magnitudes which lie more than one standard deviation from
the weighted mean.

• Welch-Stetson variability index 𝐽 Stetson (1996), defined as

𝐽 =
∑𝑘 sgn(𝑃𝑘)√|𝑃𝑘|

𝐾 ,

where the sum runs over all 𝐾 pairs of observations of the object, where sgn
returns the sign of its argument, and where

𝑃𝑘 = 𝛿𝑖𝛿𝑗 (5)

𝛿𝑖 = √
𝑛

𝑛 − 1
𝜈𝑖 − 𝜈

𝜎𝜈
, (6)

where 𝑛 is the number of observations of the object, and 𝜈𝑖 its flux in observa-
tion 𝑖. Following the procedure described in Stetson Stetson (1996), the mean
is not the simpleweighted algebraicmean, but is rather reweighted to account
for outliers.

• Welch-Stetson variability index 𝐾 Stetson (1996), defined as

𝐾 =
1/𝑛 ∑𝑖=1 𝑁|𝛿𝑖|

√1/𝑛 ∑𝑖=1 𝑁|𝛿2
𝑖 |

,

where 𝑁 is the total number of observations of the object and 𝛿𝑖 is defined as
above.

Percentiles. Taking, for example, 𝐹5,95 to be the difference between the 95% and
5% flux values, we report:

• All of 𝐹40,60/𝐹5,95, 𝐹32.5,67.5/𝐹5,95, 𝐹25,75/𝐹5,95, 𝐹17.5,82.5/𝐹5,95, 𝐹10,90/𝐹5,95

3
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• The largest absolute departure from the median flux, divided by the median.

• The ratio of 𝐹5,95 to the median.

QSO similarity metrics, as defined by Butler & Bloom Butler & Bloom (2011):

• 𝜒2
QSO/𝜈.

• 𝜒2
False/𝜈.

2 Motivations for updates to the current baseline

Both the DPDD and LDM-151 are clear that the baselined features are provisional and will be
updated. Here we briefly review some motivations for doing so now.

First, the Richards et al. (2011) features are now a decade old, and there has been great
progress in the field since, with many new classification efforts run on larger and deeper sur-
veys. It is reasonable to review these efforts and distill any new findings. Also, while training
machine-learned models on features extracted from the lightcurves remains a popular ap-
proach, classification using deep neural nets run directly on lightcurves or their proxies have
begun to appear (e.g., Mahabal et al., 2017; Naul et al., 2018; Muthukrishna et al., 2019). What
is the appropriate role of LSST-computed features in this rapidly-evolving landscape?

It is also worth noting the ways in which the Richards et al. (2011) study differs from the LSST
application. That classification was based on a retrospective analysis of single-bandOGLE and
Hipparcos data, with a particular focus on variable stars. In contrast LSST is a much deeper
multi-band survey and will accordingly identify a broader range of classes of astrophysical
transients and variables, not all of which will be well-characterized by the baseline feature
set. Moreover, features will be calculated and disseminated in alerts in near-real time to aid
rapid classification and followup of important events.

Finally we raise the issue of intepretability, which we discuss further in §4.6. The features
computed in Richards et al. (2011) were intended primarily as inputs into a machine learning
classifier. Because the LSST project will not perform scientific classification, however, its time-
series features will be a major way scientists will attempt to identify interesting objects within
its data. Additionally, the random forest classifier employed by Richards et al. (2011) readily
discards irrelevant features, so there was little incentive to remove redundant or duplicative

4
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features. In contrast the number of LSST features is tightly constrained given the scale of the
catalogs.

In sum, these considerations motivate us to look for a set of timeseries features that are
orthogonal, interpretable, and span the space of time-domain science LSST data can enable.

3 Other Timeseries Features in the Literature

In this section we review a range of other timeseries features that have been used in the lit-
erature. While it is impossible for this list to be exhaustive we have attempted to review the
papers for major classification efforts and packages. These included classification of ASAS
(Richards et al., 2012b), ASAS-SN (Jayasinghe et al., 2018, 2019a,b, 2020), PS1(Hernitschek
et al., 2016; Villar et al., 2020), HiTS (Martínez-Palomera et al., 2018), VVV (Elorrieta et al., 2016),
SNPhotCC (Kessler et al., 2010), the ANTARES broker (Narayan et al., 2018), the PLAsTiCC chal-
lenge (Malz et al., 2019; Kessler et al., 2019; Boone, 2019), OGLE (Pashchenko et al., 2018), and
ZTF (Sánchez-Sáez et al., 2021; Coughlin et al., 2020). We also reviewed existing packages for
featurizing lightcurves, including VARTOOLS (Hartman & Bakos, 2016), FATS (Nun et al., 2015),
cesium1, UPSILoN (Kim & Bailer-Jones, 2016), VaST (Sokolovsky & Lebedev, 2018), astrobase2

and tsfresh3.

We attempt to combine related or redundant expressions of the same calculations below.
Grahamet al. (2017) provides a useful taxonomy of features, suggesting that theymay charac-
terize location, scale, variability, morphology, timescales, trends, or agreement with a model.
Sokolovsky et al. (2017) and Pashchenko et al. (2018) assess features in the context of deter-
mining whether or not a source is variable and note the large degree of covariance among
commonly-used metrics.

3.1 Characterization of Periodic Variability

Awide variety of period-finding algorithms have been explored in the literature. These include
model-based methods based on the Discrete Fourier Transform (especially the Lomb-Scargle
Periodogram and variants; Lomb, 1976; Scargle, 1982; Zechmeister & Kürster, 2009; Vander-

1http://cesium-ml.org/
2https://astrobase.readthedocs.io
3https://tsfresh.readthedocs.io/

5
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Plas, 2018); phase-folding methods minimizing various scatter measures given a trial period
(e.g., Stellingwerf, 1978; Dworetsky, 1983; Schwarzenberg-Czerny, 1989; Clarke, 2002; Zucker,
2016); entropy-based methods (Cincotta et al., 1995; Cincotta, 1999; Huijse et al., 2012; Gra-
ham et al., 2013a, e.g.,); and Bayesian appraoches (e.g., Gregory & Loredo, 1992; Wang et al.,
2012). Searches for transiting exoplanets typically use the Box Least Squares (BLS) algorithm
(Kovács et al., 2002) and variants (e.g., Heller et al., 2019), which fit a narrow transit signal at
a variety of trial periods.

In a review, Graham et al. (2013b) report that no single period-finding method is optimal for
all classes of periodic object. This suggests that our selection of period finding algorithm(s)
should be guided by practical concerns. For LSST, these include the need to provide effective
periods and lightcurve characterization for a wide range of astrophysical objects; the need for
rapid execution in order to fit within the 60 sec alert latency budget; and the need to fit LSST’s
temporally sparse multi-band data.

3.1.1 Multiple Harmonics, Multiple Frequencies

Since most variable stars do not have simple sinusoidal lightcurves, authors using Lomb-
Scargle period fitting often utilize multi-harmonic and/or multi-frequency models to better
fit the lightcurves. The amplitudes and phases of the multiple components help discriminate
between classes of variables (e.g., Selam, 2004). We describe a subset below.

Richards et al. (2012b) use a three frequencies and regularized multiple harmonics, using
per-lightcurve cross-validation to determine the regularization parameter. Ratios of these
frequencies are included as features along with the regularization parameter. Dubath et al.
(2011) instead use a hypothesis-testing approach to determine whether additional harmonics
are justified4. A similar procedure is used by other authors (e.g., Drake et al., 2013; Torrealba
et al., 2015) under the name “Adaptive Fourier Decomposition”.

Simulation and empirical validation will be necessary to determine the number of frequencies
and harmonicswhichmay bemeaningfully constrained given the sampling provided by typical
LSST cadences in one year.

4Although due to boundary-value problems this use of the F-test is uncalibrated: see Protassov et al. (2002).

6
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3.1.2 Multiple bands

Most period fitting conducted in the literature has been performed on survey data taken in
one or a small handful of photometric bands. Period fitting accuracy tends to decrease when
the number of epochs is smaller than a few tens of data points. LSSTwill have about 80 epochs
yearly divided over six bands for most Wide-Fast-Deep fields; this is too small for effective
period fitting in any one band.

Accordingly, several authors have extended the period finding techniques described above
to use data in multiple bandpasses simultaneously during period fitting. These include multi-
band LombScargle (VanderPlas& Ivezić, 2015), multi-bandAnalysis of Variance (Mondrik et al.,
2015), multi-bandMutual Information (Huijse et al., 2018), as well as hybrid approaches (Saha
& Vivas, 2017). Template fitting approaches for specific object types such as RR Lyrae can
naturally conducted in multiple bands (e.g., Stringer et al., 2019).

3.1.3 Calculations on the Phase-folded lightcurve

Richards et al. (2012b) includes features that take the differences in the Lomb-Scargle lightcurve
model maxima and minima to detect eclipsing binaries. They also calculate the phase differ-
ences between the maxima and minima and the 10th and 90th percentile model slopes, the
number of frequencies consistent with 1-day aliases, and whether the ratio of frequencies is
consistent with double-mode RR Lyrae. Long et al. (2012) also calculates the same 10th and
90th percentile slopes for the lightcurve after doubling the best-fit period, and adds additional
frequency and amplitude ratios.

Dubath et al. (2011) compute several scatter measures in both time and phase space, some
that strictly use data values and some that are calculated on residuals from the periodicmodel
fit. These includemedian differences of consecutive values in both the time- and phase-orded
lightcurves;. They also compute the mean squared residuals on the time ordered lightcurve,
the phased lightcurve, and the phased lightcurve folded at twice the period. In total there are
seven scatter measures with various normalizations. In their classifier, the most valuable of
these scatter features is the MAD of the residuals divided by the MAD of the raw light curve.

Kim et al. (2014) calculated von Neumann ratios and range of cumulative sum on the phase-
folded lightcurve (§3.2.2).

7
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Jayasinghe et al. (2019b) computes the Lafler-Kinman string-length statistic onboth thephased
and temporal lightcurves as well as the normalized difference between the two lengths.

3.1.4 Nonstationarity

Some of the most interesting sources LSST finds will be those with periods that change over
LSST’s ten-year survey. ̇𝑃 searches are straighforward but too computationally expensive to
contemplate at scale. We suggest that identifying candidates to perform such searches on be
left to user-generated processing.

Similarly, some sources will show periodic behavior only after detrending long-term variability
or by windowing to remove other sources of variation. These specialized analyses are also
beyond the scope of routine processing.

3.1.5 Quality Control

Reliable period determination is vital but challenging: uneven sampling, sensitivity to the
choice of frequency grid, outliers, non-stationary processes, and frequency-dependent noise
properties can all yield spurious periodicities.

It is desirable to have a measure of the probability that the computed period is a false alarm:
that is, how likely is it that a non-periodic source would yield the observed periodogram peak?
While the Lomb-Scargle periodogram provides an analytic False Alarm Probability (FAP) of a
peak at a given frequency (Scargle, 1982) this is not the relevant FAP of a finding a spurious
peak at any frequency (VanderPlas, 2018, and references therein). Improved analytic esti-
mates for the FAP over all frequencies under certain limits (Baluev, 2008), but better con-
straints typically require computationally expensive bootstrap resampling (e.g., Ivezić et al.,
2014), although use of extreme-value statistics can reduce the number of required bootstrap
evaluations (Süveges, 2012). Recent work (Delisle et al., 2020) extends analytic FAP estimates
to handle the astrophysically-common case of temporally-correlated variability.

However, the FAP does not tell us whether the identified period is correct. Often the highest
periodogrampeak is a fraction ormultiple of the true period, particularly for eclipsing binaries
with double-peaked lightcurves. Dubath et al. (2011) provides several empirical measures to
assess period quality, including the largest phase gap in the folded lightcurve and MAD and

8
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percentile values of the scatter of the residuals about the lightcurve phased at the Lomb-
Scargle period as well as twice its value. These are also adopted by (Richards et al., 2012b).
Sánchez-Sáez et al. (2021) computes a “periodogram pseudo-entropy” from peaks in the pe-
riodogram as well as power ratios of the selected period and ratios thereof.

Given that no single period-finding method is optimal for all classes of sources (Graham et al.,
2013b), it would be valuable to report periods derived from multiple period-finding algo-
rithms. However, this may not be computationally feasible, particularly within the required
60 sec alert production latency.

3.2 Characterization of Aperiodic Variability

3.2.1 Amplitudes and Percentiles

A wide variety of combinations and scalings of percentile amplitudes are reported in the
literature. For example, Kinemuchi et al. (2006) uses a magnitude ratio of (max−median) /
(max−min)), sometimes known as the “M-test statistic.” Kim & Bailer-Jones (2016) calculates
the difference of the 75% and 25% values (the inter-quartile range).

We suggest it may be more expedient to simply report the raw flux percentiles per band and
let users construct differences and ratios as desired, rather than using the complex set of
normalized difference ratios defined in Richards et al. (2011) and LDM-151.

3.2.2 Other Statistics

Some commmonly-computed statistics include reduced 𝜒2 for a constant model:

𝜒2/d.o.f. = 1
𝑁 − 1

𝑁

∑
𝑖=1 (

𝑚𝑖 − 𝑚̄
𝜎𝑖 )

2
(7)

This may be used to derive the probability that the variability is unlikely to be due to chance
variations from a constant source (e.g., McLaughlin et al., 1996).

Enoch et al. (2003) proposed a Robust Median Statistic:

9
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RoMS = (𝑁 − 1)−1
𝑁

∑
𝑖=1

|𝑚𝑖 − median (𝑚𝑖)|
𝜎𝑖

(8)

Excess variance 𝜎sys is sometimes used to capture the amount of variability not represented
by stastical error bars (e.g., in Bernstein et al., 2018):

𝜎2
sys ≡ ⟨Δ𝑚2

𝑖 − 𝜎2
stat,𝑖⟩

Δ𝑚𝑖 ≡ 𝑚𝑖 − 𝑚̄

√1 − 𝑤𝑖/ ∑ 𝑤𝑗

𝑤𝑖 ≡ 𝜎−2
stat,𝑖

𝑚̄ ≡
∑ 𝑤𝑗𝑚𝑗

∑ 𝑤𝑗

(9)

The normalized excess variance can be calculated (e.g., Nandra et al., 1997; Allevato et al.,
2013) as:

𝜎2
sys,norm ≡

𝜎2
sys

𝑁𝑚̄2 (10)

Richards et al. (2012b) compute a robust skewmeasure gskew designed for objects that rapidly
decrease in brightness:

(med(𝑚) − med(𝑚[0 ∶ 𝑝])) + (med(𝑚) − med(𝑚[𝑝 ∶ 10))

where 𝑝 = 0.03.

Kim et al. (2011) calculate the number of objects above and below a variability threshold com-
puted from the autocorrelation. They also calculate the “range of a cumulative sum” defined
as

𝑅cs = max(𝑆) − min(𝑆)

𝑆𝑙 = 1
𝑁𝜎

𝑙

∑
𝑖=1

(𝑚𝑖 − 𝑚̄) .
(11)

They also compute the ratio of the standard deviation to the mean magnitude. They adapt a
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Conmetric fromWozniak (2000) that assesses howmany sets of three consecutive data points
are more than 2𝜎 outliers in the same direction. Finally they use the von Neumann ratio

𝜂 = 1
(𝑁 − 1)𝜎2

𝑁−1

∑
𝑖=1

(𝑚𝑖+1 − 𝑚𝑖)
2 (12)

which assesses the smoothness of a lightcurve by calculating the squared differences of con-
secutive points.

Kim et al. (2014) proposed an alternative vonNeumann ratio to account for unequal sampling:

𝜂𝑒 = 𝜔̄ (𝑡𝑁−1 − 𝑡1)
2 ∑𝑁−1

𝑖=1 𝑤𝑖(𝑚𝑖+1−𝑚𝑖)
2

𝜎2Σ𝑁−1
𝑖=1 𝑤𝑖

𝑤𝑖 = 1
(𝑡𝑖+1−𝑡𝑖)

2 .
(13)

Mowlavi (2014) discusses theAbbe value,𝒜 = 𝜂/2, andperforms a slidingwindowcomputation
of it on sub-regions of the lightcurve. Comparing the mean of these subsample Abbe values
𝒜sub to that of the whole timeseries gives the “excess Abbe value”:

ℰ𝒜 ≡ 𝒜sub − 𝒜 (14)

which can distinguish transient, pulsating, trended, and featureless lightcurves in the ℰ𝒜 vs.
𝒜 plane for 100-day window timescales.

Kim&Bailer-Jones (2016) computes the ratio of the squared sumof residuals above and below
themedian, which Jayasinghe et al. (2019b) reports is effective in identifying eclipsing binaries.
They also include the Shapiro-Wilk statistic, which tests for normality.

Tamuz et al. (2006) defines an “alarm” statistic for detecting runs on residuals 𝑟𝑖,𝑗 :

𝒜alarm = 1
𝜒2

𝑀

∑
𝑖=1 (

𝑟𝑖,1
𝜎𝑖,1

+
𝑟𝑖,2
𝜎𝑖,2

+ ⋯ +
𝑟𝑖,𝑘
𝜎𝑖,𝑘𝑖 )

2

− (1 + 4
𝜋 ) (15)

where 𝑖 denotes the 𝑖th “run” of consecutive residuals of the same sign and 𝑗 is the 𝑗th mea-
surement in that run. This statistic is implemented in VARTOOLS for a constantmodel. Sokolovsky
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et al. (2017) describes some related variants, including the 𝑆𝐵 variability statistic of Arellano
Ferro et al. (2012).

Stetson (1996) developed an 𝐿 index which is a weighted product of the 𝐽 and 𝐾 indicies al-
ready included in our baseline feature set. Sokolovsky et al. (2017) describes variants of the
Welch-Stetson 𝐼 Welch & Stetson (1993) and Stetson 𝐽 , 𝐾 , and 𝐿 indices which relax assump-
tions that the observations are taken in simultaneous pairs.

tsfresh includes a range of statistics for generic non-astronomical timeseries, including ap-
proximate entropy5, which quantifies irregularity in timeseries data; various tests and mea-
sures of autocorrelation and nonstationarity; and number of mean crossings.

Mislis et al. (2016) presents two features later adopted by Narayan et al. (2018), an integral of
the autocorrelation over all lags 𝜏:

𝐴1 =
|

𝑛

∑
𝑟=1 (

1
(𝑛 − 𝜏) ⋅ rms2

𝑛=𝑟

∑
𝑖=1

(𝑥𝑖 − 𝑥̄) (𝑥𝑖+𝜏 − 𝑥̄))|
(16)

and a modification of the Shannon Entropy comparing the observed CDF of the data to a
normal distribution.

Sánchez-Sáez et al. (2021) computes a “Mexican Hat Power Spectrum” to assess the lightcurve
variance at 10 and 100 day timescales.

Many classes of accreting systems—especially AGN but also cataclysmic variables, X-ray bina-
ries, and Young Stellar Objects—show stochastic variability.

(Kozłowski, 2016, and references therein) describe the use of the Structure Function to capture
the variability of the data as a function of lag time 𝛿𝑡. This distribution may be characterized
by a power-law index and a decorrelation timescale at which the Structure Function slope flat-
tens intowhite noise. The authors caution about conflicting definitions and parameterizations
of the Structure Function in the literature. (Hernitschek et al., 2016) uses Gaussian Processes
to derive a multi-band Structure Function, while Hu & Tak (2020) uses a Kalman filtering ap-
proach to determine the likelihood of a multi-band Damped RandomWalk model with 𝑂(𝑘3𝑛)

5https://en.wikipedia.org/wiki/Approximate_entropy
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complexity. (Graham et al., 2014) proposes an alternative metric, the Slepian Wavelet Vari-
ance. A general family of Continuous Autoregressive Moving Average (CARMA) models can
also be used to model the stochastic variability (Moreno et al., 2019, and references therein).
Sánchez-Sáez et al. (2021) and De Cicco et al. (2021) included Damped Random Walk, Struc-
ture Function, and Irregular Autoregressive (CAR(1)) fits in their classification of ZTF alerts and
VLT data, respectively.

Several distinct classes of astronomical sources show outbursts (or dips) relative to a quies-
centmagnitude; these include cataclysmic variables and other compact binaries, stellar flares,
Young Stellar Objects, and AGN. The Lasair broker uses exponentialmoving averages to detect
outbursts (Roy Williams, priv. comm.):

𝐸𝑀𝐴(𝑡) = 𝑓 ∗ 𝐸𝑀𝐴(𝑡𝑝) + (1 − 𝑓) ∗ 𝑚(𝑡)
𝑓 = 𝑒𝑥𝑝−(𝑡 − 𝑡𝑝)/𝜏

(17)

where 𝑡𝑝 is the previous detection time and 𝜏 is a timescale. Lasair uses 𝜏 values of 2 days, 8
days, and 28 days. Other approaches for detecting outbursts includes Bayesian Blocks (Scar-
gle et al., 2013) and various prescriptions for detecting consecutive “runs” (e.g., Chang et al.,
2015).

3.2.3 Characterizing Multi-band Lightcurves

Kim et al. (2014) calculates quantiles and the von Neumann ratio on a 𝐵 − 𝑅 color lightcurve
derived from a survey with near-simultaneous multi-band measurements.

3.3 Characterization of Transients

While the boundary between transient events and aperiodic variability can be fuzzy, the base-
lined features from Richards et al. (2011) were derived solely for applications to variable stars.
Rapid identification and classification of transients in the LSST alert stream will thus bene-
fit from their own specialized features. We review here several transient classification ap-
proaches from the literature6.

6From https://www.kaggle.com/michaelapers/the-plasticc-astronomy-classification-demo and https:
//github.com/villrv/TransientClassifierTable
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The redshift of the transient host galaxy is a key input for transient classification. LSST will not
provide directly a single redshift for a given transient. Rather, each DIAObject will include the
IDs of the three nearest star-like and galaxy-like Objects from the most recent LSST Data Re-
lease as well as the three nearest extended objects from a low-redshift galaxy catalog (DPDD).
Science users or brokers can use these ids to obtain photometric redshifts from LSST Data Re-
leases if they have Data Rights. An additional crossmatch to a low-redshift galaxy catalog is
under study. DMTN-049 discusses photometric redshifts in more detail.

3.3.1 Template and Model Fitting

Lightcurve fitting is common in transient classification. Some authors use software (e.g., Jha
et al., 2007; Kessler et al., 2009; Sako et al., 2011; Barbary, 2014; Guillochon et al., 2018) to fit
templates or models derived from observed transients (e.g., Nugent et al., 2002; Guy et al.,
2007; Conley et al., 2008; Kessler et al., 2019; Vincenzi et al., 2019).

Others use analytic models meant to capture typical transient lightcurve shapes.

Newling et al. (2011) fit a parametric function with free parameters of explosion time, ampli-
tude, relative rise and decay times, temporal stretch, and a tail decay function Ψ(𝑡):

𝐹 (𝑡) = 𝐴 (
𝑡 − 𝜙

𝜎 )
𝑘
exp(−𝑡 − 𝜙

𝜎 ) 𝑘−𝑘e𝑘 + Ψ(𝑡). (18)

Bazin et al. (2011) developed a parameterization with the goal of identifying SNe Ia:

𝑓 𝑘(𝑡) = 𝐴𝑘 𝑒−(𝑡−𝑡𝑘
0)/𝜏𝑘

𝑓𝑎𝑙𝑙

1 + 𝑒−(𝑡−𝑡𝑘
0)/𝜏𝑘

𝑟𝑖𝑠𝑒

+ 𝑐𝑘. (19)

Karpenka et al. (2013) developed a generic parameterization that canfit double-peaked lightcurves:

𝑓(𝑡) = 𝐴 [1 + 𝐵 (𝑡 − 𝑡1)
2
]

𝑒−(𝑡−𝑡0)/𝑇fall

1 + 𝑒−(𝑡−𝑡0)/𝑇rise
. (20)
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Villar et al. (2019) developed an analytic model for generic explosive transient lightcurves,
including a plateau phase (but that does not capture the second peak in Type Ia SNe directly):

𝐹 =
⎧⎪
⎨
⎪⎩

𝐴+𝛽(𝑡−𝑡0)
1+𝑒−(𝑡−𝑡0)/𝜏 sise 𝑡 < 𝑡1

(𝐴+𝛽(𝑡1−𝑡0))𝑒−(𝑡−𝑡1)/𝜏fall

1+𝑒−(𝑡0−𝑡0)/𝜏rise
𝑡 ≥ 𝑡1

(21)

Sánchez-Sáez et al. (2021) modified the parametric model of Villar et al. (2019) to smoothly
transition between the two piecewise functions:

𝐹 =
𝐴 (1 − 𝛽′ 𝑡−𝑡0

𝑡1−𝑡0 )
1 + exp(− 𝑡−𝑡0

𝜏rise )
⋅ [1 − 𝜎 (

𝑡 − 𝑡1
3 )]

+
𝐴 (1 − 𝛽′)exp(− 𝑡−𝑡1

𝜏tall )
1 + exp(− 𝑡−𝑡0

𝜏rise )
⋅ [𝜎 (

𝑡 − 𝑡1
3 )]

(22)

where 𝜎(𝑡) is the sigmoid function.

Microlensing events have characteristic shapes which can be fit using standard optimization
algorithms. VARTOOLS implements a basic microlensing model from Wozniak et al. (2001).

Finally, some authors employ non-parametric models. Richards et al. (2012a) and Ishida &
de Souza (2013) used a nonparametric cubic spline. Varughese et al. (2015) and Lochner
et al. (2016) decomposed the lightcurve using wavelets after mapping to a uniform tempo-
ral grid using cubic splines and Gaussian Processes, respectively. Revsbech et al. (2018) used
Gaussian Processes for data augmentation and Boone (2019) introduced a Gaussian Process
model for arbitrary transients that modeled both the temporal and spectral dimensions, en-
abling simultaneous multi-band fitting. For our purposes, the difficulty with nonparameteric
representation is that they are difficult to represent compactly, although various featuresmay
be extracted from the nonparametric model (e.g., Boone, 2019).

For explosive transients, key generic observables to capture include the slope of the rising
and falling lightcurve, estimates of the source color, and estimates of the time of the peak.
However, these may vary from band to band. In Wide-Fast-Deep the sparse sampling in indi-

15



Review of Timeseries Features | DMTN-118 | Latest Revision 2021-05-28

vidual filters may not provide enough points to perform fits in individual bands. Additionally,
some form of interpolation may be required to estimate source color as a function of time
depending on the distribution of filters within the adopted LSST cadence.

Information about non-detections can also be important in understanding a transient’s evo-
lution and distinguishing it from other classes of source. Sánchez-Sáez et al. (2021) included
several nondetection features in their ZTF alert classifier.

Villar et al. (2020) trained an autoencoder to compress Gaussian-Process-interpolated su-
pernova lightcurves into a low-dimensional latent space. These features were then com-
bined with per-band times to rise to peak, times to fall from peak, peak absolute magnitudes,
median post-peak slope, and light-curve integral (each calculated from the interpolated GP
lightcurves) to train a random-forest classifier.

4 Open Questions and Practical Concerns

In this section we highlight open issues that warrant further study.

4.1 AP and DRP Timeseries features

Should AP’s DIAObject features be the same as the DRP DIAObject and Object features, as assumed
in the current baseline? Without AP’s latency requirements, more computationally expensive
features (or simply more features) could be computed. DRP will compute features for the full
LSST lightcurve, so features sensitive to more subtle signals could be valuable.

AP timeseries features will not need to identify variable objects (e.g., Pashchenko et al., 2018),
as in AP only objects that vary relative to the template image will produce DIASources. In DRP,
however, we will compute timeseries features on all DIAObjects and Objects regardless of
their variability.

Having disparate feature sets between AP and DRP could cause some user confusion, but our
judgment is that this is aminor issue. We suggest that a larger set of features be contemplated
for DRP (subject to sizing model considerations), but that they be a superset of those used for
AP so that users can compare AP and DRP features that are common.
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4.2 Multi-band features

Most timeseries features to date are computed on single-band timeseries data. The current
baseline calls for LSST to compute single-band features independently on each LSST band.
Are there new features we could develop that take advantage of LSST’s sparse multi-band data?
Multi-band period fitting has already been developed. Model-dependent lightcurve fits could
provide interpolated color estimates for transients. Are there other timeseries features that
could be usefully generalized from their current single-band form?

One option would be to perform single-band fitting when there are enough data points to
warrant it, and to fall back to multi-band fitting in other cases. The disadvantage to this ap-
proach is that it is wasteful from a storage perspective (the same fit is duplicated over six
per-band columns).

4.3 Number of data points

When a new DIAObject is identified in AP, it will only have one DIASource. Are there threshold
numbers of epochs (per band) we should require before computing some timeseries features? Even
basic statistics like the mean require 2–3 points to provide information, and more complex
features like period finding need tens of epochs. Since many false positives will only have a
few detections, omitting them from feature computation would provide savings.

We propose to empirically determine theminimumnumbers of DIASources required to obtain
meaningful results for various features. Features not computed will have values set to NULL.

4.3.1 Period finding

The LSST main survey has 825 fiducial visits per pointing, divided among six bands. In AP, the
number of epochs available for period fitting in a single band using the 12 month DIASource

history (10–30) is at the very lower limit of what is needed for effective period fitting. This
suggests that a multi-band period fit will be required for AP.

DRP will fit timeseries features using the entire DIASource history, so after several years of the
survey single-band period finding could be effective. Are there astrophysical sources where
we expect the period to differ by band, or where the assumptions of multi-band period fitting
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will break down?

DRP will see some sources where the period may change over the lifetime of LSST. Are there
enough sources where this is a problem to justify limiting the temporal range of data input to
period finding?

4.4 Model Fitting

Fits to theoretical models for a wide variety of transients, variables, and moving objects can
provide great insight into their astrophysics. Models of supernovae, other transients, mi-
crolensing events, eclipsing binaries, spotted stars, stellar flares, andmore are widely applied
in the literature.

Should LSST perform science-specific model fits?

We argue that in general these fits are better done by science users on self-selected subsam-
ples of the LSST data rather than as part of generic feature computation on all DIAObjects
and Objects. First, the very nature of the models is that they are only meaningful for a small
subset of the total number of objects LSST has data for; even identifying the relevant sub-
set requires classification which is beyond LSST scope. Additionally, model fitting is typically
computationally expensive, and is unlikely to be compatible with the 60-second alert latency
budget. Moreover, it is not clear there is sufficient space to store all of the resulting best-fit
model parameters, their uncertainties, and the goodness of fit. Finally, the choice of models
to fit, their parameter constraints, and so on are best left to specialists.

Accordingly, we recommend features that characterize broad classes of generic events: e.g.,
the rise time of a transient calculated from a nonparametric fit rather than a SALT2 SN Ia
template.

4.5 Solar System Object Features

The schema proposed in RFC 620 for the SSObject catalog allocates the same amount of space
for periodic features as for DIAObjects. From a code reuse perspective, having the same set of
features for both DIAObjects and SSObjects is simple. However, it is not obvious that features
developed for transients and AGN are useful to compute on SSObjects.
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Additionally, we note that for the features to be useful for SSObjects they should be computed
on phase-corrected SSSource data points rather than the original DIASources.

4.6 Interpretability

All of the timeseries features computed will be available for user query. This suggests that
we prefer features that are more intelligible to humans where possible, in order to aid in
construction of appropriate queries and filters. We expect that the highest-performance
machine-learning classifiers will work directly on the data products themselves rather than
on the precomputed features, so feature interpretability is more valuable than performance
in a hypothetical classifier.

4.7 Storage

We have budgeted for floats, but most statistics don’t have or need many digits of floating
point precision. We could cast some features as integers either to save space or tomake room
for additional features. However, this conversion is lossy and imposes an additional usability
burden on users, who must remember when and how to convert any fields to floating point7.
Additionally the range of the feature must be well-understood to prevent overflows.

4.8 Compute features of flux or magnitudes?

Most optical classification programs in the literature have featurized lightcurves reported in
magnitudes. Given the complicationsmagnitudes impose with negative detections (which will
be common in the forced photometry table, for instance) we will compute our features in flux
space. It is worth noting that for some features this may lead to altered behavior compared
to the literature; we should ensure that the statistical sense of the features we compute is
preserved.

4.9 Difference or total flux?

Each DIASource has multiple flux measurements associated with it. The most important val-
ues are psFlux, the point-source flux measured on the difference image, and totFlux, a forced

7or use a provided convenience function
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PSF flux measured at the DIASource centroid on the calibrated (unsubtracted) visit image. Dif-
ferent science casesmay require that distinct timeseries features be calculated on lightcurves
built from different fluxes. Features that try to capture the rise time of a supernovae will ob-
viously use a psFlux lightcurve, as there is no relevant flux in the template. For a periodogram
of a variable star, however, the total flux including the flux in the reference may be more
appropriate.

It may be suggested that computing timeseries features on fluxes rather than on magnitudes
makes this distinction irrelevant. However, since the templates used for subtraction are up-
dated in every data release, this means that the range of psFlux values for variable stars will
change with the images used in the templates. This will create jumps when AP processing
switches to new templates after each data release. These offsets are different for each vari-
able object because their phases and flux levels are uncorrelated. Section 4.13 discusses
some possible mitigations.

It may be preferable to compute variable star features on the forced photometry measure-
ment (totFlux) on the Processed Visit Image, which would provide the correct absolute flux
values nomatter the template8. However, thesemeasurementswill be less reliable in crowded
fields, and they are susceptible to centroid errors in the triggering DIASource.

4.10 Compute AP features using Forced Photometry?

LSST obtains several kinds of forcedphotometrymeasurements duringAlert Production. When
a new DIAObject is created, “precovery” forced photometry is obtained for any images at that
position observed in the past 30 days. And each time a field is observed, LSST will compute
forced photometry at the positions of all overlapping DIAObjects that have been detected in
the last 12 months. In both cases forced photometry is performed both on the difference
image and the unsubtracted processed visit image, so the discussion in §4.9 also applies to
forced photometry.

Should we use forced photometry measurements (either on difference images or PVIs) to compute
timeseries features in AP? If we only compute features when DIASources are detected, variable
star photometry will be highly biased, as no DIASources will be present when the variable star

8The Alerce ZTF alert classifier described in Sánchez-Sáez et al. (2021) uses a total flux estimate for its variable
star features. As ZTF forced photometry measurements are not available, they use the sum of the difference flux
and the template flux of the spatially coincident template source, if such a source exists.
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flux is near the template value. However, PSF forced photometry fluxes are sensitive to cen-
troiding errors, whether due to bad image subtractions or errors in modeling proper motion.
Moreover, for objects that have faded significantly many forced photometry measurements
will simply record zero flux with background noise, which could dilute the signal for some
features. Sánchez-Sáez et al. (2021) achieved reasonable performance in classifying variable
stars from ZTF alerts despite the absence of forced photometry measurements.

There is also a subtlety in interpreting the alert contents. Alerts are only triggered by DIA-

Source detections, but if weuse forcedphotometry lightcurves for timeseries features the latest
measurement will not be identical to the triggering DIASource. Also, DIAObjectswould require
updating each time a new forced photometery measurement was made, which is not in the
current processing plan.

If we did decide that we wanted to update DIAObject features with forced photometry results
(and no triggering DIASource) we could do so in a more leisurely way—these would be subject
to L1PublicT rather than OTT1 requirements.

In DRP uniform forced photometry lightcurves will be available for all Objects and DIAObjects,
so it will make sense to use these to compute the timeseries features.

4.11 Times

Period-finding and other computations for short-timescale events can be biased by light-
travel time across the solar system. Accordingly our feature computation should should use
barycentered times. Pipelines will natively report TAI times. Should we also store the barycen-
tered times in the DIASource record? The transformation is straightforward to compute; how-
ever, if the barycentered time is omitted users will have to recognize that they cannot repro-
duce our features without first computing the barycentered times.

4.12 Special Programs

Observations of Special Programs might benefit from different timeseries features to capi-
talize on the potential changes in image characteristics, time sampling, and total number of
observations. Would special programs benefit from unique timeseries features, and could this
be accommodated technically? As discussed in DMTN-065, Special Programs data will be pro-
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cessed using the same algorithms used for data from themain survey, but the algorithms can
be reconfigured. In practice this mightmean adding additional frequencies to a Lomb-Scargle
periodogram computation, for example, but not adding entirely new classes of model fits.

4.13 Changing Templates

AP expects to change templates after each major data release, both to improve the quality
of the templates and to minimize false detections due to objects with larger proper motion.
Template changes will introduce offsets in the difference fluxes for most objects. As we ex-
pect Data Releases will occur roughly annually, and we compute lightcurve histories in Alert
Production on twelve months of data, this means that there will always be a template offset
present in our feature computation.

There are a range of possible solutions to this problem. We could determine offsets for all DIA-
Objects by processing the same science exposures with the new and old templates and mea-
suring the change in the DIASource flux, but it is unclear how reliable this procedure would be
in practice. A more robust possibility for deriving the offset would be to conduct forced pho-
tometry at the DIAObject locations in the old and new templates and difference their fluxes,
or to difference the old and new templates and perform forced photometry at the DIAObject

locations on the difference of the templates. In either case it would be necessary to apply
these offsets consistently and transparently during feature computation for twelve months,
before they would be superceded by new values after the next data release.

4.14 Evaluation

Given the options and questions above, how can we choose which features to implement?

Superficially, a large-scale data challenge seems like an appealing way to find the “best” fea-
tures. However, as discussed in §4.6, raw performance by machine-learning classifiers is not
the only goal for these features, since they are also used by humans to write queries and alert
filters. Additionally, there is no truly LSST-like dataset in existence today to conduct the data
challenge on, and themost realistic simulation effort to date (PLaSTICC) only simulated a sub-
set of the wide-ranging event classes LSST will see. Finally, there is no effort available in the
LSST construction project to support such an effort, and it is unclear that communitity mem-
bers are prepared to undertake such a large project without substantial financial support.
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Accordingly we suggest using this document as a starting point and a respository for dis-
cussion with the LSST Science Collaborations, and will include the evolving proposed feature
set below as an appendix. We suggest that comunity-developed simulations and precursor
survey data be used to scientifically validate the features proposed here and their implemen-
tation, instead of using them in a data challenge format to actually select the features.

Concretely, we suggest that the Project personnel, in coordination with members of the Sci-
ence Collaborations, use a limited set of fiducial object classes, simulated on the baseline ca-
dence, to tune the proposed feature set (e.g., determining the number of period frequencies
and harmonics that may be successfully fit; identifying threshold numbers of epochs needed
for some features). Broad community validation of the features would occur during the Data
Previews (although the temporal baseline and cadences will not match that expected during
the full survey).

A relevant and open question is, Will LSST compute the same features over the ten year survey?
Maintaining the same feature set provides continuity and simplies the continuously-updated
PPDB. However, it requires us to correctly develop the LSST feature set before having seen
any LSST data, which seems difficult. One option would be to only use a portion of the allo-
cated space in the early survey, so that additional features could be added in later years of
operations without removing features previously calculated.

5 Recommendations

Here we summarize the questions listed above and our recommendations.

5.1 Periodic Features

Since LSST images are spread among six filters, we expect that best results will be achieved by
using a multi-band period search technique. We recommend providing an Adaptive Fourier
Decomposition rather than a nonparameteric period estimate, as the Fourier parametersmay
be used to identify variable types.

We will include an analytic estimate of the False Alarm Probability (e.g., Baluev, 2008; Delisle
et al., 2020) and goodness of fit measures.
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5.2 Aperiodic Features

For flexibility, we recommend storing raw percentiles rather than combinations thereof—if
desired, user-defined functionsmay be provided to simply computations (e.g., of the 5%–95%
amplitude).

We recommend use of robust statistics where possible due to the unavoidable presence of
outliers. Wewill investigate the tradeoffs in identifying and potentially excluding outliers from
some statistics (e.g., Pashchenko et al., 2018).

To provide useful features for the widest range of transient and variable objects, we should
include measures of stochastic variability and transient characterization. Given the wide sci-
entific community which uses these features, generic characterization of transients will be
more broadly useful than detailed models specializes for individual transient types.

6 Proposed Feature Set

To be determined after consultation with the science community.

A draft proposal for features can be found at https://ls.st/fkr. It will be incorporated into
this technote after an initial phase of community feedback.

7 User Interfaces to Timeseries Data

Users will access LSST timeseries data via ADQL queries through the Science Platform’s VO
APIs. Concretely, they will receive VOTables of DIAObjects, DIASources, etc. Depending on the
parameters of the query (e.g., a large spatial cone search), multiple distinct astrophysical ob-
jects may be included in the response. It will be the user’s responsibility to handle multiple
distinct returned objects appropriately.

In Python environments such as the Science Platform’s Notebook aspect, the pyVO package
can be used to transform the returned VOTable into astropy Tables.

The Rubin Obsevatory pipelines that compute timeseries features do not do so on VOTables
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or astropy Tables. Accordingly, to re-run the timeseries feature computation code on data
returned by user queries it will be necessary to translate the results into the appropriate
pipeline-internal representations. We expect to provide basic user tutorials for converting
query payloads back into these internal data structures. Thus we expect users to be able to
functionally reproduce our feature computations by running the feature code in the Science
Platform on data returned from TAP queries.

We do not plan at this time to develop or deploy a “Timeseries object” abstraction. We note
that similar efforts are underway in astropy and the VO, and we are continuing to monitor
those developments.
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Acronym Description
ADQL Astronomical Data Query Language
AGN active galactic nuclei
ANTARES Arizona-NOA Temporal Analysis and Response to Events System
AP Alert Production
API Application Programming Interface
B Byte (8 bit)
DM Data Management
DMTN DM Technical Note
DPDD Data Product Definition Document
DRP Data Release Production
LDM LSST Data Management (Document Handle)
LSE LSST Systems Engineering (Document Handle)
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-

scope)
PPDB Prompt Products DataBase
PSF Point Spread Function
RFC Request For Comment
SN SuperNovae
TAI International Atomic Time
TAP Table Access Protocol
VLT Very Large Telescope (ESO)
VO Virtual Observatory
ZTF Zwicky Transient Facility
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